StatAnalytica

251+ Math Research Topics [2024 Updated]

Math research topics

Mathematics, often dubbed as the language of the universe, holds immense significance in shaping our understanding of the world around us. It’s not just about crunching numbers or solving equations; it’s about unraveling mysteries, making predictions, and creating innovative solutions to complex problems. In this blog, we embark on a journey into the realm of math research topics, exploring various branches of mathematics and their real-world applications.

How Do You Write A Math Research Topic?

Writing a math research topic involves several steps to ensure clarity, relevance, and feasibility. Here’s a guide to help you craft a compelling math research topic:

  • Identify Your Interests: Start by exploring areas of mathematics that interest you. Whether it’s pure mathematics, applied mathematics, or interdisciplinary topics, choose a field that aligns with your passion and expertise.
  • Narrow Down Your Focus: Mathematics is a broad field, so it’s essential to narrow down your focus to a specific area or problem. Consider the scope of your research and choose a topic that is manageable within your resources and time frame.
  • Review Existing Literature: Conduct a thorough literature review to understand the current state of research in your chosen area. Identify gaps, controversies, or unanswered questions that could form the basis of your research topic.
  • Formulate a Research Question: Based on your exploration and literature review, formulate a clear and concise research question. Your research question should be specific, measurable, achievable, relevant, and time-bound (SMART).
  • Consider Feasibility: Assess the feasibility of your research topic in terms of available resources, data availability, and research methodologies. Ensure that your topic is realistic and achievable within the constraints of your project.
  • Consult with Experts: Seek feedback from mentors, advisors, or experts in the field to validate your research topic and refine your ideas. Their insights can help you identify potential challenges and opportunities for improvement.
  • Refine and Iterate: Refine your research topic based on feedback and further reflection. Iterate on your ideas to ensure clarity, coherence, and relevance to the broader context of mathematics research.
  • Craft a Title: Once you have finalized your research topic, craft a compelling title that succinctly summarizes the essence of your research. Your title should be descriptive, engaging, and reflective of the key themes of your study.
  • Write a Research Proposal: Develop a comprehensive research proposal outlining the background, objectives, methodology, and expected outcomes of your research. Your research proposal should provide a clear roadmap for your study and justify the significance of your research topic.

By following these steps, you can effectively write a math research topic that is well-defined, relevant, and poised to make a meaningful contribution to the field of mathematics.

251+ Math Research Topics: Beginners To Advanced

  • Prime Number Distribution in Arithmetic Progressions
  • Diophantine Equations and their Solutions
  • Applications of Modular Arithmetic in Cryptography
  • The Riemann Hypothesis and its Implications
  • Graph Theory: Exploring Connectivity and Coloring Problems
  • Knot Theory: Unraveling the Mathematics of Knots and Links
  • Fractal Geometry: Understanding Self-Similarity and Dimensionality
  • Differential Equations: Modeling Physical Phenomena and Dynamical Systems
  • Chaos Theory: Investigating Deterministic Chaos and Strange Attractors
  • Combinatorial Optimization: Algorithms for Solving Optimization Problems
  • Computational Complexity: Analyzing the Complexity of Algorithms
  • Game Theory: Mathematical Models of Strategic Interactions
  • Number Theory: Exploring Properties of Integers and Primes
  • Algebraic Topology: Studying Topological Invariants and Homotopy Theory
  • Analytic Number Theory: Investigating Properties of Prime Numbers
  • Algebraic Geometry: Geometry Arising from Algebraic Equations
  • Galois Theory: Understanding Field Extensions and Solvability of Equations
  • Representation Theory: Studying Symmetry in Linear Spaces
  • Harmonic Analysis: Analyzing Functions on Groups and Manifolds
  • Mathematical Logic: Foundations of Mathematics and Formal Systems
  • Set Theory: Exploring Infinite Sets and Cardinal Numbers
  • Real Analysis: Rigorous Study of Real Numbers and Functions
  • Complex Analysis: Analytic Functions and Complex Integration
  • Measure Theory: Foundations of Lebesgue Integration and Probability
  • Topological Groups: Investigating Topological Structures on Groups
  • Lie Groups and Lie Algebras: Geometry of Continuous Symmetry
  • Differential Geometry: Curvature and Topology of Smooth Manifolds
  • Algebraic Combinatorics: Enumerative and Algebraic Aspects of Combinatorics
  • Ramsey Theory: Investigating Structure in Large Discrete Structures
  • Analytic Geometry: Studying Geometry Using Analytic Methods
  • Hyperbolic Geometry: Non-Euclidean Geometry of Curved Spaces
  • Nonlinear Dynamics: Chaos, Bifurcations, and Strange Attractors
  • Homological Algebra: Studying Homology and Cohomology of Algebraic Structures
  • Topological Vector Spaces: Vector Spaces with Topological Structure
  • Representation Theory of Finite Groups: Decomposition of Group Representations
  • Category Theory: Abstract Structures and Universal Properties
  • Operator Theory: Spectral Theory and Functional Analysis of Operators
  • Algebraic Number Theory: Study of Algebraic Structures in Number Fields
  • Cryptanalysis: Breaking Cryptographic Systems Using Mathematical Methods
  • Discrete Mathematics: Combinatorics, Graph Theory, and Number Theory
  • Mathematical Biology: Modeling Biological Systems Using Mathematical Tools
  • Population Dynamics: Mathematical Models of Population Growth and Interaction
  • Epidemiology: Mathematical Modeling of Disease Spread and Control
  • Mathematical Ecology: Dynamics of Ecological Systems and Food Webs
  • Evolutionary Game Theory: Evolutionary Dynamics and Strategic Behavior
  • Mathematical Neuroscience: Modeling Brain Dynamics and Neural Networks
  • Mathematical Physics: Mathematical Models in Physical Sciences
  • Quantum Mechanics: Foundations and Applications of Quantum Theory
  • Statistical Mechanics: Statistical Methods in Physics and Thermodynamics
  • Fluid Dynamics: Modeling Flow of Fluids Using Partial Differential Equations
  • Mathematical Finance: Stochastic Models in Finance and Risk Management
  • Option Pricing Models: Black-Scholes Model and Beyond
  • Portfolio Optimization: Maximizing Returns and Minimizing Risk
  • Stochastic Calculus: Calculus of Stochastic Processes and Itô Calculus
  • Financial Time Series Analysis: Modeling and Forecasting Financial Data
  • Operations Research: Optimization of Decision-Making Processes
  • Linear Programming: Optimization Problems with Linear Constraints
  • Integer Programming: Optimization Problems with Integer Solutions
  • Network Flow Optimization: Modeling and Solving Flow Network Problems
  • Combinatorial Game Theory: Analysis of Games with Perfect Information
  • Algorithmic Game Theory: Computational Aspects of Game-Theoretic Problems
  • Fair Division: Methods for Fairly Allocating Resources Among Parties
  • Auction Theory: Modeling Auction Mechanisms and Bidding Strategies
  • Voting Theory: Mathematical Models of Voting Systems and Social Choice
  • Social Network Analysis: Mathematical Analysis of Social Networks
  • Algorithm Analysis: Complexity Analysis of Algorithms and Data Structures
  • Machine Learning: Statistical Learning Algorithms and Data Mining
  • Deep Learning: Neural Network Models with Multiple Layers
  • Reinforcement Learning: Learning by Interaction and Feedback
  • Natural Language Processing: Statistical and Computational Analysis of Language
  • Computer Vision: Mathematical Models for Image Analysis and Recognition
  • Computational Geometry: Algorithms for Geometric Problems
  • Symbolic Computation: Manipulation of Mathematical Expressions
  • Numerical Analysis: Algorithms for Solving Numerical Problems
  • Finite Element Method: Numerical Solution of Partial Differential Equations
  • Monte Carlo Methods: Statistical Simulation Techniques
  • High-Performance Computing: Parallel and Distributed Computing Techniques
  • Quantum Computing: Quantum Algorithms and Quantum Information Theory
  • Quantum Information Theory: Study of Quantum Communication and Computation
  • Quantum Error Correction: Methods for Protecting Quantum Information from Errors
  • Topological Quantum Computing: Using Topological Properties for Quantum Computation
  • Quantum Algorithms: Efficient Algorithms for Quantum Computers
  • Quantum Cryptography: Secure Communication Using Quantum Key Distribution
  • Topological Data Analysis: Analyzing Shape and Structure of Data Sets
  • Persistent Homology: Topological Invariants for Data Analysis
  • Mapper Algorithm: Method for Visualization and Analysis of High-Dimensional Data
  • Algebraic Statistics: Statistical Methods Based on Algebraic Geometry
  • Tropical Geometry: Geometric Methods for Studying Polynomial Equations
  • Model Theory: Study of Mathematical Structures and Their Interpretations
  • Descriptive Set Theory: Study of Borel and Analytic Sets
  • Ergodic Theory: Study of Measure-Preserving Transformations
  • Combinatorial Number Theory: Intersection of Combinatorics and Number Theory
  • Additive Combinatorics: Study of Additive Properties of Sets
  • Arithmetic Geometry: Interplay Between Number Theory and Algebraic Geometry
  • Proof Theory: Study of Formal Proofs and Logical Inference
  • Reverse Mathematics: Study of Logical Strength of Mathematical Theorems
  • Nonstandard Analysis: Alternative Approach to Analysis Using Infinitesimals
  • Computable Analysis: Study of Computable Functions and Real Numbers
  • Graph Theory: Study of Graphs and Networks
  • Random Graphs: Probabilistic Models of Graphs and Connectivity
  • Spectral Graph Theory: Analysis of Graphs Using Eigenvalues and Eigenvectors
  • Algebraic Graph Theory: Study of Algebraic Structures in Graphs
  • Metric Geometry: Study of Geometric Structures Using Metrics
  • Geometric Measure Theory: Study of Measures on Geometric Spaces
  • Discrete Differential Geometry: Study of Differential Geometry on Discrete Spaces
  • Algebraic Coding Theory: Study of Error-Correcting Codes
  • Information Theory: Study of Information and Communication
  • Coding Theory: Study of Error-Correcting Codes
  • Cryptography: Study of Secure Communication and Encryption
  • Finite Fields: Study of Fields with Finite Number of Elements
  • Elliptic Curves: Study of Curves Defined by Cubic Equations
  • Hyperelliptic Curves: Study of Curves Defined by Higher-Degree Equations
  • Modular Forms: Analytic Functions with Certain Transformation Properties
  • L-functions: Analytic Functions Associated with Number Theory
  • Zeta Functions: Analytic Functions with Special Properties
  • Analytic Number Theory: Study of Number Theoretic Functions Using Analysis
  • Dirichlet Series: Analytic Functions Represented by Infinite Series
  • Euler Products: Product Representations of Analytic Functions
  • Arithmetic Dynamics: Study of Iterative Processes on Algebraic Structures
  • Dynamics of Rational Maps: Study of Dynamical Systems Defined by Rational Functions
  • Julia Sets: Fractal Sets Associated with Dynamical Systems
  • Mandelbrot Set: Fractal Set Associated with Iterations of Complex Quadratic Polynomials
  • Arithmetic Geometry: Study of Algebraic Geometry Over Number Fields
  • Diophantine Geometry: Study of Solutions of Diophantine Equations Using Geometry
  • Arithmetic of Elliptic Curves: Study of Elliptic Curves Over Number Fields
  • Rational Points on Curves: Study of Rational Solutions of Algebraic Equations
  • Galois Representations: Study of Representations of Galois Groups
  • Automorphic Forms: Analytic Functions with Certain Transformation Properties
  • L-functions: Analytic Functions Associated with Automorphic Forms
  • Selberg Trace Formula: Tool for Studying Spectral Theory and Automorphic Forms
  • Langlands Program: Program to Unify Number Theory and Representation Theory
  • Hodge Theory: Study of Harmonic Forms on Complex Manifolds
  • Riemann Surfaces: One-dimensional Complex Manifolds
  • Shimura Varieties: Algebraic Varieties Associated with Automorphic Forms
  • Modular Curves: Algebraic Curves Associated with Modular Forms
  • Hyperbolic Manifolds: Manifolds with Constant Negative Curvature
  • Teichmüller Theory: Study of Moduli Spaces of Riemann Surfaces
  • Mirror Symmetry: Duality Between Calabi-Yau Manifolds
  • Kähler Geometry: Study of Hermitian Manifolds with Special Symmetries
  • Algebraic Groups: Linear Algebraic Groups and Their Representations
  • Lie Algebras: Study of Algebraic Structures Arising from Lie Groups
  • Representation Theory of Lie Algebras: Study of Representations of Lie Algebras
  • Quantum Groups: Deformation of Lie Groups and Lie Algebras
  • Algebraic Topology: Study of Topological Spaces Using Algebraic Methods
  • Homotopy Theory: Study of Continuous Deformations of Spaces
  • Homology Theory: Study of Algebraic Invariants of Topological Spaces
  • Cohomology Theory: Study of Dual Concepts to Homology Theory
  • Singular Homology: Homology Theory Defined Using Simplicial Complexes
  • Sheaf Theory: Study of Sheaves and Their Cohomology
  • Differential Forms: Study of Multilinear Differential Forms
  • De Rham Cohomology: Cohomology Theory Defined Using Differential Forms
  • Morse Theory: Study of Critical Points of Smooth Functions
  • Symplectic Geometry: Study of Symplectic Manifolds and Their Geometry
  • Floer Homology: Study of Symplectic Manifolds Using Pseudoholomorphic Curves
  • Gromov-Witten Invariants: Invariants of Symplectic Manifolds Associated with Pseudoholomorphic Curves
  • Mirror Symmetry: Duality Between Symplectic and Complex Geometry
  • Calabi-Yau Manifolds: Ricci-Flat Complex Manifolds
  • Moduli Spaces: Spaces Parameterizing Geometric Objects
  • Donaldson-Thomas Invariants: Invariants Counting Sheaves on Calabi-Yau Manifolds
  • Algebraic K-Theory: Study of Algebraic Invariants of Rings and Modules
  • Homological Algebra: Study of Homology and Cohomology of Algebraic Structures
  • Derived Categories: Categories Arising from Homological Algebra
  • Stable Homotopy Theory: Homotopy Theory with Stable Homotopy Groups
  • Model Categories: Categories with Certain Homotopical Properties
  • Higher Category Theory: Study of Higher Categories and Homotopy Theory
  • Higher Topos Theory: Study of Higher Categorical Structures
  • Higher Algebra: Study of Higher Categorical Structures in Algebra
  • Higher Algebraic Geometry: Study of Higher Categorical Structures in Algebraic Geometry
  • Higher Representation Theory: Study of Higher Categorical Structures in Representation Theory
  • Higher Category Theory: Study of Higher Categorical Structures
  • Homotopical Algebra: Study of Algebraic Structures in Homotopy Theory
  • Homotopical Groups: Study of Groups with Homotopical Structure
  • Homotopical Categories: Study of Categories with Homotopical Structure
  • Homotopy Groups: Algebraic Invariants of Topological Spaces
  • Homotopy Type Theory: Study of Foundations of Mathematics Using Homotopy Theory

In conclusion, the world of mathematics is vast and multifaceted, offering endless opportunities for exploration and discovery. Whether delving into the abstract realms of pure mathematics or applying mathematical principles to solve real-world problems, mathematicians play a vital role in advancing human knowledge and shaping the future of our world.

By embracing diverse math research topics and interdisciplinary collaborations, we can unlock new possibilities and harness the power of mathematics to address the challenges of today and tomorrow. So, let’s embark on this journey together as we unravel the mysteries of numbers and explore the boundless horizons of mathematical inquiry.

Related Posts

best way to finance car

Step by Step Guide on The Best Way to Finance Car

how to get fund for business

The Best Way on How to Get Fund For Business to Grow it Efficiently

Research Areas

Analysis & pde, applied math, combinatorics, financial math, number theory, probability, representation theory, symplectic geometry & topology.

Secondary Menu

  • Math Intranet

Research News

Image of Hongkai Zhou and Tarek Elgindi

Research Areas

Ranked among the top 20 math graduate programs by U.S. News & World Report, our faculty conduct more than $3.7 million in research each year for industry, the Department of Defense, the National Science Foundation, and the National Institutes of Health. Our faculty of 35 includes three National Academy of Science members and two National Academy of Engineering members. The Department supports more than 50 graduate students.

Selected Publications

Annals of PDE

  • Diversity, Equity and Inclusion
  • Department Leadership
  • Collaborations & Partnerships
  • Location & Directions
  • Code of Conduct
  • Feedback for Math department
  • Math for Non-Majors
  • Math Careers
  • Senior Theses
  • Non-research Independent Study
  • Research Independent Study
  • Julia Dale Prize
  • Mathematical Research Award
  • Karl Menger Award
  • Excellence in Community Service Award
  • Major Scholarships
  • Transfer Credits
  • Study Abroad
  • Sum-of-norms clustering
  • The combinatorics of Legendrian surfaces
  • Computational exploration of geometric flows in G2-geometry
  • Formalization of mathematics
  • Interactions between fluids and elastic solids
  • Analysis of preconditioned stochastic gradient descent with non-convex loss
  • Moduli spaces of stable weighted hyperplane arrangements
  • Computing hyperbolic structures from link diagrams
  • Automated theorem proving and proof verification
  • Applications of Neumann-type nonlocal boundary condition
  • Spatial and Temporal Epidemic Prediction by Neural Networks
  • Structure and stability for Brascamp–Lieb inequalities
  • Mathematical questions arising from the COVID epidemic
  • Exploring minimal surfaces modulo p
  • Modeling the dynamics of filter fouling
  • Smoothness of subspace-valued maps
  • Holonomy of combinatorial surfaces
  • Characterizing emerging features in cell dynamics
  • Parameter interference in epidemiological models
  • Calculus of variations and notions of convexity
  • Topological insulators
  • Mathematical clairvoyant: computational inverse problems
  • DOmath 2020
  • DOmath 2019
  • DOmath 2018
  • DOmath 2017
  • Undergraduate Research Symposium
  • Other Summer Programs
  • PRUV 2020 Reports
  • PRUV Fellows
  • Duke Math Meet
  • Math Competition Honors
  • Peer Tutoring
  • Private Tutoring
  • Mentoring for Women
  • TA + Help Room applications
  • Trinity Ambassadors
  • Application Advice
  • How to Apply
  • Qualifying Requirement
  • Preliminary Exam
  • Dissertation & Defense
  • Concurrent Degree Programs
  • Advice & Perspective
  • Summer Opportunities
  • Applying for Jobs
  • Fellowships and Grants
  • Graduate Student Leadership
  • PhD Advising
  • Living in Durham
  • Graduate Program Faculty
  • Recent Graduates
  • Rudin Prize
  • L.P. Smith Award
  • All Courses
  • Enrollment Policies
  • Placement Guidelines
  • Math Advanced Placement Tests
  • Typical Initial Course Sequences
  • Calculus Self-Assessments
  • Frequently Asked Questions
  • Courses by Math Fields
  • Courses by Career and Interests
  • Foundational Courses for Graduate Students
  • Minicourses
  • Primary Faculty
  • Secondary Faculty
  • Postdoctoral Fellows
  • Emeritus Faculty
  • Graduate Students
  • Faculty Honors & Awards
  • Algebra & Combinatorics
  • Biological Modeling
  • Computational Mathematics
  • Geometry: Differential & Algebraic
  • Mathematical Physics
  • Number Theory
  • PDE & Dynamical Systems
  • Physical Modeling
  • Probability
  • Signals, Images and Data
  • Greater Mathematical Sciences
  • Selected Faculty Books
  • Graduate Student Publications
  • NCM24: New Connections in Math 2024
  • Previous Projects
  • Past Undergrad Research Events
  • Graduate Research & Activities
  • RTG: Number Theory
  • TRIPODS@Duke
  • Algebraic Geometry
  • Applied Math & Analysis
  • Combinatorics
  • Data Dialogue
  • Frontiers in Mathematics
  • Geometry & Topology
  • Past Gergen Lecture Speakers
  • Graduate-Faculty Talks
  • Machine Learning
  • Mathematical Biology
  • Professional Development
  • Public Lectures
  • String Theory
  • Triangle Topology
  • Undergraduate Events
  • For Current Students
  • Assisting Duke Students
  • Welcome from the Chair
  • Michalik Distinguished Lecture Series
  • Pittsburgh Mathematical Horizons Lecture Series
  • Open Faculty Positions
  • Advising & Support
  • Calculus Curriculum
  • Degree Programs/Requirements
  • Extracurricular Activities
  • Math Placement Assessment
  • Math Assistance Center/Posvar Computing Lab
  • Research/Career Opportunities
  • Study Abroad
  • Admissions & Financial Aid
  • Degree Programs
  • Graduate Employment
  • Graduate Handbook
  • Information for Incoming Graduate Students
  • Organizations
  • Research Opportunities
  • Teaching Opportunities

Research Areas

  • Graduate Research
  • Undergraduate Research
  • Mathematics Research Center
  • Technical Reports
  • Publications
  • Gallery of Research Images
  • Faculty Admin
  • Adjunct Faculty
  • Part-Time Faculty
  • Emeritus Faculty
  • Post-Doctoral Associates
  • Graduate Students
  • Stay in Touch
  • Newsletter Archive
  • Upcoming Events
  • Past Events
  • Prospective Students

research topics for masters in mathematics

Department members engage in cutting-edge research on a wide variety of topics in mathematics and its applications. Topics continually evolve to reflect emerging interests and developments, but can roughly grouped into the following areas.

Algebra, Combinatorics, and Geometry

Algebra, combinatorics, and geometry are areas of very active research at the University of Pittsburgh.

Analysis and Partial Differential Equations

The research of the analysis group covers functional analysis, harmonic analysis, several complex variables, partial differential equations, and analysis on metric and Carnot-Caratheodory spaces.

Applied Analysis

The department is a leader in the analysis of systems of nonlinear differential equations and dynamical systems  that arise in modeling a variety of physical phenomena. They include problems in biology, chemistry, phase transitions, fluid flow, flame propagation, diffusion processes, and pattern formation in nonlinear stochastic partial differential equations.

Mathematical Biology

The biological world stands as the next great frontier for mathematical modeling and analysis. This group studies complex systems and dynamics arising in various biological phenomena.

Mathematical Finance

A rapidly growing area of mathematical finance is Quantitative Behavioral Finance. The high-tech boom and bust of the late 1990s followed by the housing and financial upheavals of 2008 have made a convincing case for the necessity of adopting broader assumptions in finance.

Numerical Analysis and Scientific Computing

The diversity of this group is reflected in its research interests: numerical analysis of partial differential equations , adaptive methods for scientific computing, computational methods of fluid dynamics and turbulence, numerical solution of nonlinear problems arising from porous media flow and transport, optimal control, and simulation of stochastic reaction diffusion systems.

Topology and Differential Geometry

Research in analytic topology continues in the broad area of generalized metric spaces. This group studies relativity theory and differential geometry, with emphasis on twistor methods, as well as geometric and topological aspects of quantum field theory, string theory, and M-theory.

Guide to Graduate Studies

The PhD Program The Ph.D. program of the Harvard Department of Mathematics is designed to help motivated students develop their understanding and enjoyment of mathematics. Enjoyment and understanding of the subject, as well as enthusiasm in teaching it, are greater when one is actively thinking about mathematics in one’s own way. For this reason, a Ph.D. dissertation involving some original research is a fundamental part of the program. The stages in this program may be described as follows:

  • Acquiring a broad basic knowledge of mathematics on which to build a future mathematical culture and more detailed knowledge of a field of specialization.
  • Choosing a field of specialization within mathematics and obtaining enough knowledge of this specialized field to arrive at the point of current thinking.
  • Making a first original contribution to mathematics within this chosen special area.

Students are expected to take the initiative in pacing themselves through the Ph.D. program. In theory, a future research mathematician should be able to go through all three stages with the help of only a good library. In practice, many of the more subtle aspects of mathematics, such as a sense of taste or relative importance and feeling for a particular subject, are primarily communicated by personal contact. In addition, it is not at all trivial to find one’s way through the ever-burgeoning literature of mathematics, and one can go through the stages outlined above with much less lost motion if one has some access to a group of older and more experienced mathematicians who can guide one’s reading, supplement it with seminars and courses, and evaluate one’s first attempts at research. The presence of other graduate students of comparable ability and level of enthusiasm is also very helpful.

University Requirements

The University requires a minimum of two years of academic residence (16 half-courses) for the Ph.D. degree. On the other hand, five years in residence is the maximum usually allowed by the department. Most students complete the Ph.D. in four or five years. Please review the program requirements timeline .

There is no prescribed set of course requirements, but students are required to register and enroll in four courses each term to maintain full-time status with the Harvard Kenneth C. Griffin Graduate School of Arts and Sciences.

Qualifying Exam

The department gives the qualifying examination at the beginning of the fall and spring terms. The qualifying examination covers algebra, algebraic geometry, algebraic topology, complex analysis, differential geometry, and real analysis. Students are required to take the exam at the beginning of the first term. More details about the qualifying exams can be found here .

Students are expected to pass the qualifying exam before the end of their second year. After passing the qualifying exam students are expected to find a Ph.D. dissertation advisor.

Minor Thesis

The minor thesis is complementary to the qualifying exam. In the course of mathematical research, students will inevitably encounter areas in which they have gaps in knowledge. The minor thesis is an exercise in confronting those gaps to learn what is necessary to understand a specific area of math. Students choose a topic outside their area of expertise and, working independently, learns it well and produces a written exposition of the subject.

The topic is selected in consultation with a faculty member, other than the student’s Ph.D. dissertation advisor, chosen by the student. The topic should not be in the area of the student’s Ph.D. dissertation. For example, students working in number theory might do a minor thesis in analysis or geometry. At the end of three weeks time (four if teaching), students submit to the faculty member a written account of the subject and are prepared to answer questions on the topic.

The minor thesis must be completed before the start of the third year in residence.

Language Exam

Mathematics is an international subject in which the principal languages are English, French, German, and Russian. Almost all important work is published in one of these four languages. Accordingly, students are required to demonstrate the ability to read mathematics in French, German, or Russian by passing a two-hour, written language examination. Students are asked to translate one page of mathematics into English with the help of a dictionary. Students may request to substitute the Italian language exam if it is relevant to their area of mathematics. The language requirement should be fulfilled by the end of the second year. For more information on the graduate program requirements, a timeline can be viewed at here .

Non-native English speakers who have received a Bachelor’s degree in mathematics from an institution where classes are taught in a language other than English may request to waive the language requirement.

Upon completion of the language exam and eight upper-level math courses, students can apply for a continuing Master’s Degree.

Teaching Requirement

Most research mathematicians are also university teachers. In preparation for this role, all students are required to participate in the department’s teaching apprenticeship program and to complete two semesters of classroom teaching experience, usually as a teaching fellow. During the teaching apprenticeship, students are paired with a member of the department’s teaching staff. Students attend some of the advisor’s classes and then prepare (with help) and present their own class, which will be videotaped. Apprentices will receive feedback both from the advisor and from members of the class.

Teaching fellows are responsible for teaching calculus to a class of about 25 undergraduates. They meet with their class three hours a week. They have a course assistant (an advanced undergraduate) to grade homework and to take a weekly problem session. Usually, there are several classes following the same syllabus and with common exams. A course head (a member of the department teaching staff) coordinates the various classes following the same syllabus and is available to advise teaching fellows. Other teaching options are available: graduate course assistantships for advanced math courses and tutorials for advanced undergraduate math concentrators.

Final Stages

How students proceed through the second and third stages of the program varies considerably among individuals. While preparing for the qualifying examination or immediately after, students should begin taking more advanced courses to help with choosing a field of specialization. Unless prepared to work independently, students should choose a field that falls within the interests of a member of the faculty who is willing to serve as dissertation advisor. Members of the faculty vary in the way that they go about dissertation supervision; some faculty members expect more initiative and independence than others and some variation in how busy they are with current advisees. Students should consider their own advising needs as well as the faculty member’s field when choosing an advisor. Students must take the initiative to ask a professor if she or he will act as a dissertation advisor. Students having difficulty deciding under whom to work, may want to spend a term reading under the direction of two or more faculty members simultaneously. The sooner students choose an advisor, the sooner they can begin research. Students should have a provisional advisor by the second year.

It is important to keep in mind that there is no technique for teaching students to have ideas. All that faculty can do is to provide an ambiance in which one’s nascent abilities and insights can blossom. Ph.D. dissertations vary enormously in quality, from hard exercises to highly original advances. Many good research mathematicians begin very slowly, and their dissertations and first few papers could be of minor interest. The ideal attitude is: (1) a love of the subject for its own sake, accompanied by inquisitiveness about things which aren’t known; and (2) a somewhat fatalistic attitude concerning “creative ability” and recognition that hard work is, in the end, much more important.

  • Student intranet /
  • Staff intranet

The University of Manchester

Department of Mathematics

Research projects

Find a postgraduate research project in your area of interest by exploring the research projects we offer in the Department of Mathematics.

Programme directors

If you are not sure which supervisors are the best match for your interests, contact the postgraduate programme directors:

  • Sean Holman  (applied mathematics and numerical analysis)
  • Olatunji Johnson (probability, statistics and financial mathematics)
  • Marcus Tressl  (pure mathematics)

You can also get in touch with the postgraduate research leads through our  research themes  page.

Opportunities within the department are advertised by supervisors as either:

  • Specific, well-defined individual projects : which you can apply for directly after contacting the named supervisor
  • Research fields with suggestions for possible projects : where you can discuss a range of potential projects available in a specific area with the supervisor.

Choosing the right PhD project depends on matching your interests to those of your supervisor.

Our  research themes  page gives an overview of the research taking place in the Department and contacts for each area. Potential supervisors can also be contacted directly through the academic staff list . They will be able to tell you more about the type of projects they offer and/or you can suggest a research project yourself.

Please note that all PhD projects are eligible for funding via a variety of scholarships from the Department, the Faculty of Science and Engineering and/or the University; see our  funding page  for further details. All scholarships are awarded competitively by the relevant postgraduate funding committees.

Academics regularly apply for research grants and may therefore be able to offer funding for specific projects without requiring approval from these committees. Some specific funded projects are listed below, but many of our students instead arrive at a project through discussion with potential supervisors.

Specific, individual projects

Browse all of our specific, individual projects listed on FindAPhD:

Research field projects

In addition to individual projects listed on FindAPhD, we are also looking for postgraduate researchers for potential projects within a number of other research fields.

Browse these fields below and get in contact with the named supervisor to find out more.

Continuum mechanics

Maths: continuum mechanics, maths: mathematics in the life sciences, numerical analytics and scientific computing, statistics, inverse problems, uncertainty quantification and data science, algebra, logic and number theory, maths: algebra, logic and number theory, mathematics in the life sciences, maths: statistics, inverse problems, uncertainty quantification and data science, probability, financial mathematics and actuarial science, applied mathematics and numerical analysis, complex deformations of biological soft tissues.

Supervisor: [email protected] | [email protected]

The answers to many open questions in medicine depend on understanding the mechanical behaviour of biological soft tissues. For example, which tendon is most appropriate to replace the anterior cruciate ligament in reconstruction surgery? what causes the onset of aneurysms in the aorta? and how does the mechanics of the bladder wall affect afferent nerve firing? Current work at The University of Manchester seeks to understand how the microstructure of a biological soft tissue affects its macroscale mechanical properties. We have previously focused on developing non-linear elastic models of tendons and are now seeking to incorporate more complex physics such as viscoelasticity, and to consider other biological soft tissues, using our “in house” finite element software oomph-lib. The work will require development and implementation of novel constitutive equations as well as formulation of non-standard problems in solid mechanics. The project is likely to appeal to students with an interest in continuum mechanics, computational mathematics and interdisciplinary science.

Fluid flow, interfaces, bifurcations, continuation and control

Supervisor: [email protected]

My research interests are in fluid dynamical systems with deformable interfaces, for example bubbles in very viscous fluid, or inkjet printed droplets. The deformability of the interface can lead to complex nonlinear behaviour, and often occurs in configurations where full numerical simulation of the three-dimensional system is computationally impossible. This computational difficulty leaves an important role for mathematical modelling, in using asymptotic or physical arguments to devise simpler models which can help us understand underlying physical mechanisms, make testable predictions, and to directly access control problems for active (feedback) or passive control mechanisms. Most recently I am interested in how different modelling methodologies affect whether models are robust in the forward or control problems. I am also interested in how control-based continuation methods can be used in continuum mechanics to directly observe unstable dynamical behaviour in experiments, even without access to a physical model. This research combines fluid dynamics, mathematical modelling, computational methods (e.g. with the finite-element library oomph-lib), experiments conducted in the Manchester Centre for Nonlinear Dynamics, control theory and nonlinear dynamics. I would not expect any student to have experience in all these areas and there is scope to shape any project to your interests.

Granular materials in industry and nature

Supervisor: [email protected]

The field of granular materials encompasses a vast range of materials and processes, from the formation of sand dunes on a beach and snow avalanches in the mountains, to the roasting of coffee beans and the manufacture of pharmaceutical tablets. The science of granular materials is still in its relative infancy, and many aspects of flowing grains cannot yet be predicted with a continuum rheology. Insights into granular material behaviour come from a range of methods, and my research therefore combines mathematical modelling, computation, and laboratory experiments, undertaken at the Manchester Centre for Nonlinear Dynamics laboratories. Some example areas of work suitable for a PhD project include: - Debris flows and their deposits Debris flows are rapid avalanches of rock and water, which are triggered on mountainsides when erodible sediment is destabilised by heavy rainfall or snowmelt. These flows cause loss of life and infrastructure across the world, but many of the physical mechanisms underlying their motion remain poorly understood. Because it is difficult to predict where and when a debris flow will occur, scientific observations are rarely made on an active flow. More often, all we have to work from is the deposit left behind, and some detective work is required to infer properties of the flow (such as its speed and composition) from this deposit. This project focuses on developing theoretical models for debris flows that predict both a debris flow and its deposit -- in particular the way in which grains of different sizes are distributed throughout the deposit. The aim is then to invert such models, allowing observations of a deposit, when combined with model simulations, to constrain what must have happened during the flow. - Modelling polydispersity Much of the current theory of granular materials has been formulated with the assumption of a single type of grain. When grains vary in size, shape or density, it opens up the possibility that such grains with different properties separate from one another, a process called segregation. A fundamental question in this area is predicting the rate of segregation from a description of a granular material, such as the distribution of particle sizes. Thanks to some recent developments, we are approaching a point where this can be done for very simple granular materials (in particular those containing only two, similar, sizes sizes of grain), but many practical granular materials are much more complex. For example, it is common for mixtures of grains used in industry to vary in diameter by a factor of more than 100, and the complex segregation that can occur in these mixtures is poorly understood. This project will make measurements of the segregation behaviour of such mixtures and use these to put together a theoretical framework for describing segregation in complex granular materials.

Mathematical modelling of nano-reinforced foams

Supervisor: [email protected]

Complex materials are important in almost every aspect of our lives, whether that is using a cell phone, insulating a house, ensuring that transport is environmentally friendly or that packaging is sustainable. An important facet of this is to ensure that materials are optimal in some sense. This could be an optimal stiffness for a given weight or an optimal conductivity for a given stiffness. Foams are an important class of material that are lightweight but also have the potential for unprecedented mechanical properties by adding nano-reinforcements (graphene flakes or carbon nanotubes) into the background or matrix material from which the foam is fabricated. When coupled with experimentation such as imaging and mechanical testing, mathematical models allow us to understand how to improve the design and properties of such foams. A number of projects are available in this broad area and interested parties can discuss these by making contact with the supervisor.

Wave manipulation using metamaterials

The ability to control electromagnetic waves, sound, vibration has been of practical interest for decades. Over the last century a number of materials have been designed to assist with the attenuation of unwanted noise and vibration. However, recently there has been an explosion of interest in the topic of metamaterials and metasurfaces. Such media have special microstructures, designed to provide overall (dynamic) material properties that natural materials can never hope to attain and lead to the potential of negative refraction, wave redirection and the holy grail of cloaking. Many of the mechanisms to create these artificial materials rely on low frequency resonance. Frequently we are interested in the notion of homogenisation of these microstructures and this requires a mathematical framework. A number of projects are available in this broad area and interested parties can discuss these by making contact with the supervisor.

Multiscale modelling of structure-function relationships in biological tissues

Supervisor: [email protected]

Biological tissues have an intrinsically multiscale structure. They contain components that range in size from individual molecules to the scale of whole organs. The organisation of individual components of a tissue, which often has a stochastic component, is intimately connected to biological function. Examples include exchange organs such as the lung and placenta, and developing multicellular tissues where mechanical forces play an crucial role in growth. To describe such materials mathematically, new multiscale approaches are needed that retain essential elements of tissue organisation at small scales, while providing tractable descriptions of function at larger scales. Projects are available in these areas that offer opportunities to collaborate with life scientists while developing original mathematical models relating tissue structure to its biological function.

Adaptive finite element approximation strategies

Supervisor: [email protected]

I would be happy to supervise projects in the general area of efficient solution of elliptic and parabolic partial differential equations using finite elements. PhD projects would involve a mix of theoretical analysis and the development of proof-of-concept software written in MATLAB or Python. The design of robust and efficient error estimators is an open problem in computational fluid dynamics. Recent papers on this topic include Alex Bespalov, Leonardo Rocchi and David Silvester, T--IFISS: a toolbox for adaptive FEM computation, Computers and Mathematics with Applications, 81: 373--390, 2021. https://doi.org/10.1016/j.camwa.2020.03.005 Arbaz Khan, Catherine Powell and David Silvester, Robust a posteriori error estimators for mixed approximation of nearly incompressible elasticity, International Journal for Numerical Methods in Engineering, 119: 1--20, 2019. https://doi.org/10.1002/nme.6040 John Pearson, Jen Pestana and David Silvester, Refined saddle-point preconditioners for discretized Stokes problems, Numerische Mathematik, 138: 331--363, 2018. https://doi.org/10.1007/s00211-017-0908-4

Efficient solution for PDEs with random data

I would be happy to supervise projects in the general area of efficient solution of elliptic and parabolic partial differential equations with random data. PhD projects would involve a mix of theoretical analysis and the development of proof-of-concept software written in MATLAB or Python. The design of robust and efficient error estimators for stochastic collocation approximation methods is an active area of research within the uncertainty quantification community. Recent papers on this topic include Alex Bespalov, David Silvester and Feng Xu. Error estimation and adaptivity for stochastic collocation finite elements Part I: single-level approximation, SIAM J. Scientific Computing, 44: A3393--A3412, 2022. {\tt https://doi.org/10.1137/21M1446745" target="_blank">https://doi.org/10.1137/21M1446745">https://doi.org/10.1137/21M1446745 } Arbaz Khan, Alex Bespalov, Catherine Powell and David Silvester, Robust a posteriori error estimators for stochastic Galerkin formulations of parameter-dependent linear elasticity equations, Mathematics of Computation, 90: 613--636, 2021. https://doi.org/10.1090/mcom/3572 Jens Lang, Rob Scheichl and David Silvester, A fully adaptive multilevel collocation strategy for solving elliptic PDEs with random data, J. Computational Physics, 419, 109692, 2020. https://doi.org/10.1016/j.jcp.2020.109692

Bayesian and machine learning methods for statistical inverse problems

Supervisor: [email protected]

A range of projects are available on the topic of statistical inverse problems, in particular with application to problems in applied mathematics. Our aim is to construct new methods for the solution of statistical inverse problems, and to apply them to real problems from science, biology, engineering, etc. These may be more traditional Markov chain Monte Carlo (MCMC) methods, Piecewise-deterministic Markov processes (PDMPs), gradient flows (e.g. Stein gradient descent), or entirely new families of methods. Where possible the methods will be flexible and widely applicable, which will enable us to also apply them to real problems and datasets. Some recent applications involve cell matching in biology, and characterisation of physical properties of materials, for example the thermal properties of a manmade material, or the Young's modulus of a tendon or artery. The project will require the candidate to be proficient in a modern programming language (e.g. Python).

Machine learning with partial differential equations

Supervisor: [email protected]

Machine learning and artificial intelligence play a major part in our everyday life. Self-driving cars, automatic diagnoses from medical images, face recognition, or fraud detection, all profit especially from the universal applicability of deep neural networks. Their use in safety critical applications, however, is problematic: no interpretability, missing mathematical guarantees for network or learning process, and no quantification of the uncertainties in the neural network output. Recently, models that are based on partial differential equations (PDEs) have gained popularity in machine learning. In a classification problem, for instance, a PDE is constructed whose solution correctly classifies the training data and gives a suitable model to classify unlabelled feature vectors. In practice, feature vectors tend to be high dimensional and the natural space on which they live tends to have a complicated geometry. Therefore, partial differential equations on graphs are particularly suitable and popular. The resulting models are interpretable, mathematically well-understood, and uncertainty quantification is possible. In addition, they can be employed in a semi-supervised fashion, making them highly applicable in small data settings. I am interested in various mathematical, statistical, and computational aspects of PDE-based machine learning. Many of those aspects translate easily into PhD projects; examples are - Efficient algorithms for p-Laplacian-based regression and clustering - Bayesian identification of graphs from flow data - PDEs on random graphs - Deeply learned PDEs in data science Depending on the project, applicants should be familiar with at least one of: (a) numerical analysis and numerical linear algebra; (b) probability theory and statistics; (c) machine learning and deep learning.

Pure Mathematics and Logic

Algebraic differential equations and model theory.

Supervisor: [email protected]

Differential rings and algebraic differential equations have been a crucial source of examples for model theory (more specifically, geometric stability theory), and have had numerous application in number theory, algebraic geometry, and combinatorics (to name a few). In this project we propose to establish and analyse deep structural results on the model theory of (partial) differential fields. In particular, in the setup of differentially large fields. There are interesting questions around inverse problems in differential Galois theory that can be address as part of this project. On the other hand, there are (still open) questions related to the different notions of rank in differentially closed fields; for instance: are there infinite dimensional types that are also strongly minimal? This is somewhat related to the understanding of regular types, which interestingly are quite far from being fully classified. A weak version of Zilber's dichotomy have been established for such types, but is the full dichotomy true?

Algebraic invariants of abelian varieties

Supervisor: [email protected]

Project: Algebraic invariants of abelian varieties Abelian varieties are higher-dimensional generalisations of elliptic curves, objects of algebraic geometry which are of great interest to number theorists. There are various open questions about how properties of abelian varieties vary across a families of abelian varieties. The aim of this project is to study the variation of algebraic objects attached to abelian varieties, such as endomorphism algebras, Mumford-Tate groups or isogenies. These algebraic objects control much of the behaviour of the abelian variety. We aim to bound their complexity in terms of the equations defining the abelian variety. Potential specific projects include: (1) Constructing "relations between periods" from the Mumford-Tate group. This involves concrete calculations of polynomials, similar in style to classical invariant theory of reductive groups. (2) Understanding the interactions between isogenies and polarisations of abelian varieties. This involves calculations with fundamental sets for arithmetic group actions, generalising reduction theory for quadratic forms. A key tool is the theory of reductive groups and their finite-dimensional representations (roots and weights).

Algebraic Model Theory of Fields with Operators

Model theory is a branch of Mathematical Logic that has had several remarkable applications with other areas of mathematics, such as Combinatorics, Algebraic Geometry, Number Theory, Arithmetic Geometry, Complex and Real Analysis, Functional Analysis, and Algebra (to name a few). Some of these applications have come from the study of model-theoretic properties of fields equipped with a family of operators. For instance, this includes differential/difference fields. In this project, we look at the model theory of fields equipped with general classes of operators and also within certain natural classes of arithmetic fields (such as large fields). Several foundational questions remain open around what is called "model-companion", "elimination of imaginaries", and the "trichotomy", this is a small sample of the problems that can be tackled.

Homeomorphism groups from a geometric viewpoint

Supervisor: [email protected]

A powerful technique for studying groups is to use their actions by isometries on metric spaces. Properties of the action can be translated into algebraic properties of the group, and vice versa. This is called geometric group theory, and has played a key role in different fields of mathematics e.g. random groups, mapping class groups of surfaces, fundamental groups of 3-manifolds, the Cremona group. In this project we will study the homeomorphisms of a surface by using geometric group theoretic techniques recently introduced by Bowden, Hensel, and myself. This is a new research initiative at the frontier between dynamics, topology, and geometric group theory, and there are many questions waiting to be explored using these tools. These range from new questions on the relationship between the topology/dynamics of homeomorphisms and their action on metric spaces, to older questions regarding the algebraic structure of the homeomorphism group.

The Existential Closedness problem for exponential and automorphic functions

Supervisor: [email protected]

The Existential Closedness problem asks when systems of equations involving field operations and certain classical functions of a complex variable, such as exponential and modular functions, have solutions in the complex numbers. There are conjectures predicting when such systems should have solutions. The general philosophy is that when a system is not "overdetermined" (e.g. more equations than variables) then it should have a solution. The notion of an overdetermined system of equations is related to Schanuel's conjecture and its analogues and is captured by some purely algebraic conditions. The aim of this project is to make progress towards the Existential Closedness conjectures (EC for short) for exponential and automorphic functions (and the derivatives of automorphic functions). These include the usual complex exponential function, as well as the exponential functions of semi-abelian varieties, and modular functions such as the j-invariant. Significant progress has been made towards EC in recent years, but the full conjectures are open. There are many special cases which are within reach and could be tackled as part of a PhD project. Methods used to approach EC come from complex analysis and geometry, differential algebra, model theory (including o-minimality), tropical geometry. Potential specific projects are: (1) proving EC in low dimensions (e.g. for 2 or 3 variables), (2) proving EC for certain relations defined in terms of the function under consideration, e.g. establishing new EC results for "blurred" exponential and/or modular functions, (3) proving EC under additional geometric assumptions on the system of equations, (4) using EC to study the model-theoretic properties of exponential and automorphic functions.

Statistics and Probability

Mathematical epidemiology.

Supervisor: [email protected]

Understanding patterns of disease at the population level - Epidemiology - is inherently a quantitative problem, and increasingly involves sophisticated research-level mathematics and statistics in both infectious and chronic diseases. The details of which diseases and mathematics offer the best PhD directions are likely to vary over time, but this broad area is available for PhD research.

Spatial and temporal modelling for crime

Supervisor: [email protected] | [email protected]

A range of projects are available on the topic of statistical spatial and temporal modelling for crime. These projects will focus on developing novel methods for modelling crime related events in space and time, and applying these to real world datasets, mostly within the UK, but with the possibility to use international datasets. Some examples of recent applications include spatio-temporal modelling of drug overdoses and related crime. These projects will aim to use statistical spatio-temporalpoint processes methods, Bayesian methods, and machine learning methods. The project will require the candidate to be proficient in a modern programming language (e.g., R or Python). Applicants should have achieved a first-class degree in Statistics or Mathematics, with a significant component of Statistics, and be proficient in a statistical programming language (e.g., R, Python, Stata, S). We strongly recommend that you contact the supervisor(s) for this project before you apply. Please send your CV and a brief cover letter to [email protected] before you apply. At Manchester we offer a range of scholarships, studentships and awards at university, faculty and department level, to support both UK and overseas postgraduate researchers. For more information, visit our funding page or search our funding database for specific scholarships, studentships and awards you may be eligible for.

Distributional approximation by Stein's method Theme

Supervisor: [email protected]

Stein's method is a powerful (and elegant) technique for deriving bounds on the distance between two probability distributions with respect to a probability metric. Such bounds are of interest, for example, in statistical inference when samples sizes are small; indeed, obtaining bounds on the rate of convergence of the central limit theorem was one of the most important problems in probability theory in the first half of the 20th century. The method is based on differential or difference equations that in a sense characterise the limit distribution and coupling techniques that allow one to derive approximations whilst retaining the probabilistic intuition. There is an active area of research concerning the development of Stein's method as a probabilistic tool and its application in areas as diverse as random graph theory, statistical mechanics and queuing theory. There is an excellent survey of Stein's method (see below) and, given a strong background in probability, the basic method can be learnt quite quickly, so it would be possible for the interested student to make progress on new problems relatively shortly into their PhD. Possible directions for research (although not limited) include: extend Stein's method to new limit distributions; generalisations of the central limit theorem; investigate `faster than would be expected' convergence rates and establish necessary and sufficient conditions under which they occur; applications of Stein's method to problems from, for example, statistical inference. Literature: Ross, N. Fundamentals of Stein's method. Probability Surveys 8 (2011), pp. 210-293.

Long-term behaviour of Markov Chains

Supervisor: [email protected]

Several projects are available, studying idealised Markovian models of epidemic, population and network processes. The emphasis will mostly be on theoretical aspects of the models, involving advanced probability theory. For instance, there are a number of stochastic models of epidemics where the course of the epidemic is known to follow the solution of a differential equation over short time intervals, but where little or nothing has been proved about the long-term behaviour of the stochastic process. Techniques have been developed for studying such problems, and a project might involve adapting these methods to new settings. Depending on the preference of the candidate, a project might involve a substantial computational component, gaining insights into the behaviour of a model, via simulations, ahead of proving rigorous theoretical results.

Quick links

  • Directories

Research Areas

It is possible to apply mathematics to almost any field of human endeavor. Here are some of the fields we’re working on now.

Scientific Computing and Numerical Analysis

Researchers : Loyce Adams , Bernard Deconinck , Randy LeVeque , Ioana Dumitriu , Anne Greenbaum , James Riley

Many practical problems in science and engineering cannot be solved completely by analytical means. Research in the area of numerical analysis and scientific computation is concerned with the development and analysis of numerical algorithms, the implementation of these algorithms on modern computer architectures, and the use of numerical methods in conjunction with mathematical modeling to solve large-scale practical problems. Major research areas in this department include computational fluid dynamics (CFD), interface and front tracking methods, iterative methods in numerical linear algebra, and algorithms for parallel computers.Current research topics in CFD include: 

  • high resolution methods for solving nonlinear conservation laws with shock wave solutions
  • numerical methods for atmospheric flows, particularly cloud formation
  • Cartesian grid methods for solving multidimensional problems in complicated geometries on uniform grids
  • spectral methods for fluid stability problems
  • front tracking methods for fluid flow problems with free surfaces or immersed interfaces in the context of porous media flow (ground water or oil reservoir simulation) and in physiological flows with elastic membranes.
  • nonequilibrium flows in combustion and astrophysical simulation
  • immersed interface methods for solidification or melting problems and seismic wave equations with discontinuous coefficients that arise in modeling the geological structure of the earth.

Another research focus is the development of methods for large-scale scientific computations that are suited to implementation on parallel computer architectures. Current interests include:

  • preconditioners for the iterative solution of large linear or nonlinear systems
  • methods for the symmetric and nonsymmetric eigenvalue problems
  • methods for general interface problems in complicated domains.

The actual implementation and testing of methods on parallel architectures is possible through collaboration with the Department of Computer Science, the Boeing Company, and the Pacific Northwest Labs.

Nonlinear Waves and Coherent Structures

Researchers : Bernard Deconinck , Nathan Kutz ,  Randy LeVeque

Most problems in applied mathematics are inherently nonlinear. The effects due to nonlinearities may become important under the right circumstances. The area of nonlinear waves and coherent structures considers how nonlinear effects influence problems involving wave propagation. Sometimes these effects are desirable and lead to new applications (mode-locked lasers, optical solitons and nonlinear optics). Other times one has no choice but to consider their impact (water waves). The area of nonlinear waves encompasses a large collection of phenomena, such as the formation and propagation of shocks and solitary waves. The area received renewed interest starting in the 1960s with the development of soliton theory, which examines completely integrable systems and classes of their special solutions.

Mathematical Biology

Researchers : Mark Kot , Hong Qian , Eric Shea-Brown , Elizabeth Halloran , Suresh Moolgavkar , Eli Shlizerman , Ivana Bozic

Mathematical biology is an increasingly large and well-established branch of applied mathematics. This growth reflects both the increasing importance of the biological and biomedical sciences and an appreciation for the mathematical subtleties and challenges that arise in the modelling of complex biological systems. Our interest, as a group, lies in understanding the spatial and temporal patterns that arise in dynamic biological systems. Our mathematical activities range from reaction-diffusion equations, to nonlinear and chaotic dynamics, to optimization. We employ a variety of tools and models to study problems that arise in development, epidemiology, ecology, neuroscience, resource management, and biomechanics; and we maintain active collaborations with a large number and variety of biologists and biomedical departments both in the University and elsewhere. For more information, please see the  Mathematical Biology page .

Atmospheric Sciences and Climate Modeling

Researchers : Chris Bretherton , Ka-Kit Tung , Dale Durran

Mathematical models play a crucial role in our understanding of the fluid dynamics of the atmosphere and oceans. Our interests include mathematical methods for studying the hydrodynamical instability of shear flows, transition from laminar flow to turbulence, applications of fractals to turbulence, two-dimensional and quasi-geostrophic turbulence theory and computation, and large-scale nonlinear wave mechanics.We also develop and apply realistic coupled radiative- chemical-dynamical models for studying stratospheric chemistry, and coupled radiative-microphysical-dynamical models for studying the interaction of atmospheric turbulence and cloud systems These two topics are salient for understanding how man is changing the earth’s climate.Our work involves a strong interaction of computer modelling and classical applied analysis. This research group actively collaborates with scientists in the Atmospheric Science, Oceanography, and Geophysics department, and trains students in the emerging interdisciplinary area of earth system modeling, in addition to providing a traditional education in classical fluid dynamics.

Mathematical Methods

Researchers : Bernard Deconinck , Robert O'Malley ,  Jim Burke , Archis Ghate , John Sylvester , Gunther Uhlmann

The department maintains active research in fundamental methods of applied mathematics. These methods can be broadly applied to a vast number of problems in the engineering, physical and biological sciences. The particular strengths of the department of applied mathematics are in asymptotic and perturbation methods, applied analysis, optimization and control, and inverse problems.

Mathematical Finance

Researchers : Tim Leung , Matt Lorig , Doug Martin

The department’s growing financial math group is active in the areas of derivative pricing & hedging, algorithmic trading, portfolio optimization, insurance, risk measures, credit risk, and systemic risk. Research includes collaboration with students as well as partners from both academia and industry.

  •   LinkedIn
  •   Mailing List
  •   YouTube
  •   News Feed

Research areas

Research in Applied Mathematics has changed dramatically over the past 30 years, with revolutionary developments in traditional areas, together with the emergence of exciting new areas. These changes have been triggered by the development of more powerful computers allowing researchers to address previously intractable problems, and developments in other fields which have led to new mathematical problems.

The department has strong research programs in:   

  • Control and Dynamical Systems  (including differential equations)
  • Fluid Mechanics
  • Mathematical Medicine and Biology
  • Mathematical Physics
  • Mathematics of Data Science and Machine Learning
  • Scientific Computing

Researchers in our department are at the forefront of a number of exciting research areas. Here are some examples:

  • Math and Water
  • Carbon Nanotubes
  • Mathematics and medicine are powerful partners
  • Saving the whales with mathematics
  • Quantum sounds could reveal the shape of the universe

Using social media to help prevent the spread of disease

The following links give further examples of research conducted in the department:

  • Recent PhD Theses in the Applied Mathematics Department
  • Recent Master's Theses in the Applied Mathematics Department
  • Conference Posters on Research Conducted in the Applied Mathematics Department

Mathematics at MIT is administratively divided into two categories: Pure Mathematics and Applied Mathematics. They comprise the following research areas:

Pure Mathematics

  • Algebra & Algebraic Geometry
  • Algebraic Topology
  • Analysis & PDEs
  • Mathematical Logic & Foundations
  • Number Theory
  • Probability & Statistics
  • Representation Theory

Applied Mathematics

In applied mathematics, we look for important connections with other disciplines that may inspire interesting and useful mathematics, and where innovative mathematical reasoning may lead to new insights and applications.

  • Combinatorics
  • Computational Biology
  • Physical Applied Mathematics
  • Computational Science & Numerical Analysis
  • Theoretical Computer Science
  • Mathematics of Data

COMMENTS

  1. 251+ Math Research Topics [2024 Updated] - StatAnalytica

    Here’s a guide to help you craft a compelling math research topic: Identify Your Interests: Start by exploring areas of mathematics that interest you. Whether it’s pure mathematics, applied mathematics, or interdisciplinary topics, choose a field that aligns with your passion and expertise.

  2. Research Areas | Mathematics - Stanford University

    Symplectic Geometry & Topology. Symplectic topology is at the crossroads of several mathematical disciplines such as low-dimensional topology, algebraic geometry, representation theory, Hamiltonian dynamics, integrable systems, mirror symmetry, and...

  3. Research Areas - Department of Mathematics

    Research Areas. Ranked among the top 20 math graduate programs by U.S. News & World Report, our faculty conduct more than $3.7 million in research each year for industry, the Department of Defense, the National Science Foundation, and the National Institutes of Health.

  4. Research Areas | Department of Mathematics | University of ...

    Department members engage in cutting-edge research on a wide variety of topics in mathematics and its applications. Topics continually evolve to reflect emerging interests and developments, but can roughly grouped into the following areas. Algebra, Combinatorics, and Geometry

  5. Guide To Graduate Study | Harvard Mathematics Department

    Upon completion of the language exam and eight upper-level math courses, students can apply for a continuing Masters Degree. Teaching Requirement. Most research mathematicians are also university teachers.

  6. Research projects - Department of Mathematics - The ...

    Research fields with suggestions for possible projects: where you can discuss a range of potential projects available in a specific area with the supervisor. Choosing the right PhD project depends on matching your interests to those of your supervisor.

  7. Research Areas | Department of Applied Mathematics ...

    The department maintains active research in fundamental methods of applied mathematics. These methods can be broadly applied to a vast number of problems in the engineering, physical and biological sciences.

  8. Guide for Graduate Students in Mathematics

    We are proud of our Mathematics (MA) and Applied Mathematics (AMA) programs, described in detail in this guide. The primary mission of our graduate programs is to educate and train mathematics students to become outstanding research scientists, educators and leaders in the scientific community.

  9. Research areas | Applied Mathematics - University of Waterloo

    The following links give further examples of research conducted in the department: Recent PhD Theses in the Applied Mathematics Department; Recent Master's Theses in the Applied Mathematics Department; Conference Posters on Research Conducted in the Applied Mathematics Department

  10. Research - MIT Mathematics

    They comprise the following research areas: Pure Mathematics. Algebra & Algebraic Geometry. Algebraic Topology. Analysis & PDEs. Geometry. Mathematical Logic & Foundations. Number Theory. Probability & Statistics. Representation Theory. Applied Mathematics.